
Motivation
Hybrid method

HIPS
New implementation

Robust and efficient solvers for large and indefinite linear systems

Ichitaro Yamazaki Xiaoye Li Esmond Ng

Lawrence Berkeley National Laboratory

ComPASS collaboration meeting,
UCLA, December 3, 2008

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Overview
Direct method
Iterative method

In many ComPASS EM applications, solving linear systems is the
“memory” bottleneck;

Ax = b,

where A is

◮ large and sparse
◮ direct methods are robust, but require infeasibly large memory.

◮ ill-conditioned and highly-indefinite
◮ preconditioned iterative methods require less memory, but suffer from

slow or no convergence.

Hybrid methods have the potential of balancing memory and time;

◮ techniques from direct methods are used to transform the original
system into a “smaller” system, which is “easier” to solve by
iterative methods.

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Overview
Direct method
Iterative method

Direct method: SuperLU DIST with MeTiS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
 0

 50

 100

 150

 200

 250

 300

 350

 400

n
n

z
 (

G
)

ti
m

e
 (

s
)

n (M)

nnz
time

n nnz fill- time
(M) (G) ratio (s)

dds 0.02 0.02 4 6
tdr108 0.11 0.03 18 6

quad 0.38 0.32 21 95
tdr158 0.92 0.63 17 164
tdr190 1.10 0.77 18 211
tdr256 1.49 1.17 20 353

two processes running on two
nodes of Franklin.

◮ large amount of fill: tdr256k could not be solved on one node
(which has 7.38GB of memory).

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Overview
Direct method
Iterative method

Direct method: SuperLU DIST with MeTiS

 0.1

 1

 10

2 4 8 16 32 64
 10

 100

 1000

m
e

m
o

ry
 (

G
)

ti
m

e
 (

s
)

nproc

memory/proc
solution time

O(n)
O(n)

nproc mem time speed
(GB) (s) up

2 4.02 380.95 1.00
4 3.40 221.06 1.72
8 3.06 140.26 2.72

16 2.85 102.81 3.71
32 2.73 89.18 4.27
64 2.65 75.97 5.01

tdr256k performance profiled
using Craypat on Franklin.

◮ memory requirement scales poorly with the number of processors.
◮ each process required an explicit use of entire memory on a node.

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Overview
Direct method
Iterative method

Direct method: SuperLU DIST with ParMeTiS

 0.01

 0.1

 1

 10

2 4 8 16 32 64
 10

 100

 1000

m
e

m
o

ry
 (

G
)

ti
m

e
 (

s
)

nproc

memory/proc
solution time

O(n)
O(n)

nproc mem time speed
(GB) (s) up

2 3.02 404.42 1.00
4 1.89 219.98 1.83
8 1.37 133.26 3.03

16 1.30 90.00 4.49
32 1.28 72.65 5.57
64 1.27 55.43 7.30

tdr256k performance profiled
using Craypat on Franklin.

◮ parallel permutation and symbolic factorization improve scalability.

◮ memory requirement can still be the bottleneck.

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Overview
Direct method
Iterative method

Preconditioned iterative method: Phidal [Henon and Saad ’06]

◮ GMRES(100) to achieve ‖b − Ax‖2/‖b‖2 ≤ 10−12 on one core of Franklin.

drop tol. fill-ratio itrs ptime stime ttime

SuperLU 17.52 −− 7.54 0.39 7.93

10−5 14.85 17 10.79 2.64 13.47
10−4 12.84 > 1000 7.60 −− −−

105, 386 × 105, 386 tdr108k, times are in seconds.

drop tol. fill-ratio itrs ptime stime ttime

SuperLU 20.53 −− 167.57 2.03 169.60

10−4 19.95 50 732.70 77.07 809.77
10−3 19.91 > 1000 743.04 −− −−

380, 698 × 380, 698 dds-quad, times are in seconds.

◮ no convergence with a relatively large number of nonzeros.

◮ larger system often requires a larger fill-ratio for convergence.

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Preprocess
Solving the system of interior domains
Solving the system of Schur complement
Solving the system of interior domains

Hybrid method: Schur complement method
Step 1: Reorder A into a 2 × 2 block system of the form

(
A11 A12

A21 A22

)(
x1

x2

)
=

(
b1

b2

)

where

◮ A11 is n1 × n1 block-diagonal, and A22 is n2 × n2.

◮ A11 is typically referred to as the interior domains, A22 is called the
separators, and A21 and A12 are the interfaces between A11 and A22.

◮ Existing software like ParMeTiS, PT-SCOTCH, or HID can be used
to create the block structure.

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Preprocess
Solving the system of interior domains
Solving the system of Schur complement
Solving the system of interior domains

Hybrid method: Schur complement method
Step 1: With a block Gaussian elimination, the 2 × 2 block system
becomes

(
A11 A12

0 S

)(
x1

x2

)
=

(
I 0

−A21A
−1
11 I

)(
b1

b2

)
,

where S = A22 − A21A
−1
11 A12 is called the Schur complement.

Hence, the solution to the linear system is given by

◮ Sx2 = b2 − A21A
−1
11 b1 (Steps 2 and 3), and

◮ A11x1 = b1 − A12x2 (Step 4).

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Preprocess
Solving the system of interior domains
Solving the system of Schur complement
Solving the system of interior domains

Hybrid method: Schur complement method
Step 2: Solve the system of interior domains;

A11z1 = b1

for z1, based on an exact LU factorization of A11,

A11 → L1U1,

where L1 is lower-triangular and U1 is upper-triangular.

◮ Each diagonal block can be factored and solved independently using
software like SuperLU DIST.

◮ Appropriate scaling and permutation are applied to enhance
numerical stability and preserve sparsity.

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Preprocess
Solving the system of interior domains
Solving the system of Schur complement
Solving the system of interior domains

Hybrid method: Schur complement method
Step 3: Approximately solve

Sx2 = b̂2

for x2, where S is the Schur complement, and b̂2 = b2 − A21z1.

Krylov method (e.g. GMRES) is used with a preconditioner based on an
incomplete factorization of S :

{
S = S̃ + ES ,

S̃ = L̃2Ũ2 + ELU ,

where

◮ ES and ELU are error matrices.

◮ Sparsity of S̃ , L̃2, and Ũ2 is enforced by discarding small nonzeros.

◮ S is accessed only through matrix-vector multiply.

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Preprocess
Solving the system of interior domains
Solving the system of Schur complement
Solving the system of interior domains

Hybrid method: Schur complement method
Step 4: Solve the system of interior domains;

A11x1 = b̂1,

where b̂1 = b1 −A12x2, and the factorization of A11 from Step 2 is used.

Our motivations for focusing on this hybrid method is
◮ memory requirement: fill is restricted within

◮ “small” diagonal blocks of L1 and U1, and
◮ S̃ , L̃2, and Ũ2, whose “sparsity” can be enforced.

◮ conditioning: in comparison to A,
◮ S is smaller in its dimension, and
◮ S often has more favorable eigenvalue distribution.

The linear system with S is expected to be “easier” to solve using a
preconditioned iterative method

◮ parallelism: interior domains are solved independently.

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Overview
Results

HIPS (Hybrid Iterative Parallel Solver):
◮ Developed by Pascal Henon (INRIA) and Yousef Saad (UM), 2008.
◮ Based on HID to achieve scalability on a parallel machine.

1 4 16 64
10

−1

10
0

10
1

10
2

Number of processors

T
im

e
 (

s
)

matrix121 with 223 domains

HID
ND
PRC
SOL

1 4 16 64
10

2

10
3

10
4

10
5

Number of processors

N
N

Z
k

matrix121 with 223 domains

L
1

L
2

◮ Current limitations:
◮ Number of processors cannot exceed the number of interior domains.
◮ Fill in ILU(S̃) is restricted within the “level-1” blocks of A22.

To run on many processors, many interior domains are needed,
which results in slow or no convergence

◮ large Schur complement and poor preconditioner (fill is restricted
within small blocks).
Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Overview
Results

Results of HIPS

tol dom n2 nnz fill-fact itrs ptime stime ttime

direct 1 −− 13M 16.8 −− 3.22 0.14 3.41

10−4 2 54 13M 16.7 4 3.77 0.64 4.47
4 238 13M 16.3 6 3.78 0.80 4.64
8 1774 10M 13.5 24 3.35 2.14 5.57

15 3056 9M 12.1 56 3.72 4.65 8.44
32 6091 8M 10.1 680 4.76 58.44 63.31
61 9556 7M 8.8 > 2000 5.35 −− −−

10−6 32 6091 8M 11.0 85 9.12 7.85 17.08
61 9556 7M 9.8 > 2000 8.66 −− −−

105, 386 × 105, 386 tdr108k with nnz(A) = 804, 301.

◮ Large number of domains is needed to reduce memory cost.
◮ GMRES(100) does not converge with a large number of domains.
◮ Larger system requires a smaller number of domains for convergence,

i.e., for tdr256k, HIPS did not converge with 4 interior domains.
Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Overview
Results
Current work
Schur complement

New implementation of the hybrid method, whose performance is
better than HIPS. Our goals are to

◮ improve numerical stability,

◮ solve each interior domain with multiple processors, and

◮ implement our own parallel ILU.

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Overview
Results
Current work
Schur complement

Implementation approach:
we rely on existing software (performance, development time, etc.);

◮ Step 1: initial partitioning is computed by HID.

◮ Step 2: system of interior domains is solved using SuperLU DIST.

◮ Step 3: drop tolerance σ1 enforces sparsity of S̃ , and drop
tolerance σ2 enforces sparsity of L̃2 and Ũ2.

σ1 σ2 ILU/LU Solve

(1) zero zero SLU SLU
(2) nonzero zero SLU PETSc
(3) zero nonzero PHIDAL HIPS
(4) nonzero nonzero PHIDAL PETSc

Four configurations to solve the Schur complement.

◮ Step 4: system of interior domains is solved by SuperLU DIST,
using their LU factorizations from Step 2.

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Overview
Results
Current work
Schur complement

Preliminary results of new implementation

σ1 σ2 nnz fill-ratio itrs ptime stime ttime

(1) 0.0 0.0 5.5M 4.0 −− 3.02 0.05 3.07

(4) 10−4 10−4 0.6M 0.5 300 1.50 8.47 9.97
17, 732 × 17, 732 dds with 147 domains, times are in seconds.

σ1 σ2 nnz fill-ratio itrs ptime stime ttime

(1) 0.0 0.0 24M 16.8 −− 18.53 0.51 19.04

(4) 10−2 10−4 22M 15.6 64 71.92 43.78 115.70
105, 386 × 105, 386 tdr108k with 468 domains, times are in seconds.

◮ GMRES(100) converged with the new implementation.
◮ HIPS did not converge for dds and tdr108k with 25 and 61 domains,

respectively.

◮ For a large system, Phidal and SuperILU require large amount of fill.

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Overview
Results
Current work
Schur complement

Preliminary results of new implementation

LU(A11) ILU(S̃)
n1 n2 nnz ratio nnz ratio

79, 278 26, 108 1.4M 3.2 20.6M 125.1
memory requirements for tdr108k.

LU(A11) Comp(S̃) ILU(S̃) Solve Total

1.16 6.93 63.83 43.78 115.70
time requirements in seconds for tdr108k.

◮ ILU(S̃) is the memory bottleneck.

◮ time for ILU(S̃) and Solve is large due to large amount of fill.

◮ Comp(S̃) can be the bottleneck for a large matrix.

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Overview
Results
Current work
Schur complement

Current work:

◮ improving the convergence rate for solving the system of Schur
complement

◮ improving the quality of preconditioner, i.e., drop tolerance based ILU.
◮ controlling the conditioning of the Schur complement.

◮ improving the time efficiency for computing Schur complement.
◮ symbolic factorization to take advantage of sparisity.

◮ developing parallel implementation.

◮ conducting further experimentation.

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Overview
Results
Current work
Schur complement

Extra slides

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Overview
Results
Current work
Schur complement

Schur complement computation:
S is computed domain-by-domain,

A22 − A21A
−1
11 A12

= A22 −
(

A
(1)
21 A

(2)
21 . . . A

(ℓ)
21

)




A
(1)
11

A
(2)
11

. . .

A
(ℓ)
11




−1 


A
(1)
12

A
(2)
12

:

A
(ℓ)
12




= A22 −
∑

ℓ

i=1 A
(i)
21B−1

i
A

(i)
12 .

◮ each A
(i)
11 is scaled and permuted for numerical stability.

◮ each A
(i)
21 and A

(i)
12 are stored in the CSR and CSC formats.

◮ S is formed by k columns at a time and stored in the CSC format.

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Overview
Results
Current work
Schur complement

For a symmetric A,
Schur complement is computed as

A22 −
∑

ℓ

i=1 A
(i)
21A

(i)−1
(11) A

(i)
12

= A22 −
∑

ℓ

i=1(L
−1
i

A
(i)
12)T (L−1

i
A

(i)
12)

= A22 −
∑

ℓ

i=1 W T
i

Wi

◮ eliminates one triangular solve
◮ computation time can be reduced to about half.

◮ requires memory to store Wi

◮ only one Wi needs to be stored at a time.

◮ takes advantage of sparsity of Wi

◮ sparsity of Wi can be enforced.

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Overview
Results
Current work
Schur complement

Preprocessing:
S is preprocessed to minimize possibility of a singular S̃ :

S = PrDrSDc ,

◮ Pr is a row permutation to move large elements to the diagonals.

◮ Dc and Dr are column and row scaling matrices, respectively such
that S has unit diagonals.

◮ this preprocess is efficiently applied since S is stored in CSC.

The subroutine mc64ad developed by Iain Duff is used.

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Overview
Results
Current work
Schur complement

Compute ILU of S̃ :

◮ enforce sparsity of S̃ .
◮ discard nonzeros of S with magnitudes less than a drop tolerance σ1.

◮ compute LU or ILU factorization of S̃ using SuperLU or Phidal.
◮ SuperILU based on level computation after the symbolic factorization

of each columns of L̃2 and Ũ2.

◮ free memory used to store S̃ .

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

Motivation
Hybrid method

HIPS
New implementation

Overview
Results
Current work
Schur complement

nnz fill-ratio itrs ptime stime ttime

Direct 287M 19.51 −− 579.53 1.66 581.19

Phidal(10−4) 277M 18.92 59 2, 026.35 61.88 2, 088.23

SuperILU(2) 239M 15.28 4 802.88 9.52 812.40
380, 698 × 380, 698 dds-quad with 284 domains.

◮ for dds-quad, HIPS did not converge for 8 domains.

Ichitaro Yamazaki, Xiaoye Li, Esmond Ng Hybrid solvers for large and indefinite linear systems

